
Introduction to Computer Security
UNIX Security

Pavel Laskov
Wilhelm Schickard Institute for Computer Science

Genesis: UNIX vs. MULTICS

MULTICS (Multiplexed Information and Computing Service)
a high-availability, modular, multi-component system
secure design from ground up: implementation of BLP
initial development from 1963 to 1969; continued until 1985;
last system decommissioned in 2000

UNIX: the opposite of MULTICS
initial assembler implementation by Ken Thompson and
Dennis Ritchie for PDP-7 and PDP-11
rewritten in C in 1973: the first operating system written in a
high-level language
continuous evolution of various dialects of UNIX and its
routines for almost 40 years

UNIX security architecture

None!

UNIX security architecture

None!

Security and UNIX design

Security was not a primary design goal of UNIX; dominant
goals were modularity, portability and efficiency.
UNIX provides sufficient security mechanisms that have to
be properly configured and administered.
The main security strength of UNIX systems comes from
open source implementation which helps improve its code
base.
The main security weakness of UNIX systems comes from
open source implementation resulting in a less professional
code base.

Security and UNIX design

Security was not a primary design goal of UNIX; dominant
goals were modularity, portability and efficiency.

UNIX provides sufficient security mechanisms that have to
be properly configured and administered.
The main security strength of UNIX systems comes from
open source implementation which helps improve its code
base.
The main security weakness of UNIX systems comes from
open source implementation resulting in a less professional
code base.

Security and UNIX design

Security was not a primary design goal of UNIX; dominant
goals were modularity, portability and efficiency.
UNIX provides sufficient security mechanisms that have to
be properly configured and administered.

The main security strength of UNIX systems comes from
open source implementation which helps improve its code
base.
The main security weakness of UNIX systems comes from
open source implementation resulting in a less professional
code base.

Security and UNIX design

Security was not a primary design goal of UNIX; dominant
goals were modularity, portability and efficiency.
UNIX provides sufficient security mechanisms that have to
be properly configured and administered.
The main security strength of UNIX systems comes from
open source implementation which helps improve its code
base.

The main security weakness of UNIX systems comes from
open source implementation resulting in a less professional
code base.

Security and UNIX design

Security was not a primary design goal of UNIX; dominant
goals were modularity, portability and efficiency.
UNIX provides sufficient security mechanisms that have to
be properly configured and administered.
The main security strength of UNIX systems comes from
open source implementation which helps improve its code
base.
The main security weakness of UNIX systems comes from
open source implementation resulting in a less professional
code base.

Principals

User identifiers (UID)
Group identifiers (GID)
A UID (GID) is always a 16-bit number
A superuser (root) always has UID 0.
UID information is stored in /etc/passwd
GID information is stored in /etc/group

User account information: /etc/passwd

1 Username: used when user logs in, 1–32 characters long
2 Password: ’x’ indicates that encrypted password is stored in

/etc/shadow
3 User ID (UID): 0 reserved for root, 1-99 for other predefined

accounts, 100-999 for system accounts/groups
4 Group ID (GID): the primary group ID
5 User ID Info: a comment field
6 Home directory: The absolute path to the directory the user

will be in when they log in
7 Command/shell: The absolute path of a command or shell

(/bin/bash)

/etc/passwd examples

root:x:0:0:root:/root:/bin/bash

dhcp:x:101:102::/nonexistent:/bin/false

syslog:x:102:103::/home/syslog:/bin/false

laskov:x:1000:1000:Pavel Laskov,,,:/home/laskov:/bin/bash

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh

Shadow password file

1 Username: the user name
2 Passwd: the encrypted password
3 Last: days since Jan 1, 1970 that password was last changed
4 May: days before password may be changed
5 Must: days after which password must be changed
6 Warn: days before password is to expire that user is warned
7 Expire: days after password expires that account is disabled
8 Disable: days since Jan 1, 1970 that account is disabled

Examples:

root:!:14118:0:99999:7:::

laskov:1/et/grJh$xssVNwpdA35TwsSt7Yjvb/:14118:0:99999:7:::

Password encryption on UNIX

DES
prepend password with 2-bit salt
take 7 lowest bits from first 8 characters
encrypt a fixed 64-bit string with DES using 56 bits as a key
convert the resulting 64 bits into 11 ASCII characters using 6
bits for character (2 bits padded with zeros)

MD5
originally written for FreeBSD to avoid export restrictions
no limit on password size
is indicated by the starting 1 in the shadow file

Group file

1 Groupname: the group name
2 Password: an x indicates that a password is set and if left

blank no password has been set
3 GID: the group ID number
4 Members: current members of the group separated by a

comma

Examples:

root:x:0:

adm:x:4:laskov

laskov:x:1000:

Root privileges

Almost no security checks:
all access control mechanisms turned off
can become an arbitrary user
can change system clock

Some restrictions remain but can be overcome:
cannot write to read-only file system but can remount them as
writable
cannot decrypt passwords but can reset them

Any user name can be root!

root:x:0:1:root:/:/bin/sh

funnybunny:x:0:101:Nice Guy:/home/funnybunny:/bin/sh

Subjects

The subjects in UNIX are processes identified by a process
ID (PID).
New process creation

fork: spawns a new child process which is an identical process
to the parent except for a new PID
vfork: the same as fork except that memory is shared between
the two processes
exec family: replaces the current process with a new process
image

Processes are mapped to UIDs (principal-subject mapping)
in either of the following ways:

real UID is always inherited from the parent process
effective UID is either inherited from the parent process or
from the owner of the file to be executed

Objects

Files, directories, memory devices, I/O devices etc. are
uniformly treated as resources subject to access control.
All resources are organized in tree-structured hierarchy
Each resource in a directory is a pointer to the inode data
structure that describes essential resource properties.

Inode Structure

mode file type and access control rights
uid user name
gid group name
atime last access time
mtime last modification time
itime last inode change time
block count size of the file in blocks
ptr pointers to physical blocks with file contents

Mode field in detail

File/resource type

’-’ file
’d’ directory ’s’ socket
’b’ block device file ’l’ symbolic link
’c’ character device file ’p’ FIFO

Access control rules (permissions)

owner rights ’r’, ’w’, ’e’, ’-’
group rights ’r’, ’w’, ’e’, ’-’
“world” rights ’r’, ’w’, ’e’, ’-’

Examples
-rw-r--r-- 1 laskov laskov 10652 ... 08-unix.tex

lrwxrwxrwx 1 root root 15 ... stdin -> /proc/self/fd/0

crw------- 1 laskov tty 136 ... /dev/pts/1

Directory permissions

read: searching a directory using e.g. ls
write: modifying directory contents, creating and deleting
files and directories
execute: making a directory current and/or opening files in it

Managing permissions

Octal encoding of permissions

read-only: 100B ⇒ 4
read-write: 110B ⇒ 6
read-write-execute: 111B ⇒ 7

Modifying permissions

chmod 777 filename
chmod u+rwx,g+rx,o-w filename

Changing file owner (root only)

chown user:group filename

Default permissions

Default permissions are usually 666 for files and 777 for
programs.
umask command changes default permissions

synopsis: umask mask

the inverse of mask is added to the current permissions

Examples:

def. perm. mask inv. mask result
777 022 755 755
777 027 750 750
666 033 744 644
666 077 700 600

Controlled invocation

Certain actions, e.g. using system ports (1-1023) or
changing a password, require root privileges.
We don’t want to give users a general root privilege by telling
them a root password, but only the right to run selected
commands as root.

Solution: set a special flag indicating that a program can be
run under the privilege of its owner rather than that of a
calling user.
Disadvantage: this right cannot be given to selected users:
all users in the “world” (or in a group) can run a program
under its owner’s privilege.

Controlled invocation

Certain actions, e.g. using system ports (1-1023) or
changing a password, require root privileges.
We don’t want to give users a general root privilege by telling
them a root password, but only the right to run selected
commands as root.
Solution: set a special flag indicating that a program can be
run under the privilege of its owner rather than that of a
calling user.

Disadvantage: this right cannot be given to selected users:
all users in the “world” (or in a group) can run a program
under its owner’s privilege.

Controlled invocation

Certain actions, e.g. using system ports (1-1023) or
changing a password, require root privileges.
We don’t want to give users a general root privilege by telling
them a root password, but only the right to run selected
commands as root.
Solution: set a special flag indicating that a program can be
run under the privilege of its owner rather than that of a
calling user.
Disadvantage: this right cannot be given to selected users:
all users in the “world” (or in a group) can run a program
under its owner’s privilege.

SUID, SGID and sticky flags

A fourth octal number is added to permissions with the
following bit designations:

SUID: set UID (allow all users to run a program)
SGID: set GID (allow all users in a specific group to run a
program)
sticky flag: only an owner (or root) can remove files in a
directory

Use chmod with four octal digits to set the extra flags:
chmod 7644 08-unix.tex

ls -l 08-unix.tex

-rwSr-Sr-T 1 laskov laskov 13031 ... 08-unix.tex

Secure mounting of filesystems

By mounting an external file system we cannot guarantee
that it is free from malicious programs, e.g. SUID to root
programs.
As a result, access control setting may need to be redefined
for mounted media:
Security options to the mount command:

-r: read-only mount
-o nosuid: turn off SUID flags for all data in a mounted file
system
-o noexec: no program can be run from a mounted file system
-o nodev: no character or block device can be accessed from
a mounted file system

Search paths

A potential danger lies attacker’s diverting of execution of a
wrong program with the same name.
Rules of conduct:

If possible, specify full paths when calling programs, e.g.
/bin/sh instead of sh.
The same applied to programs to be run locally: use
./program instead of program.
Make sure . is the first symbol in the PATH variable. This will at
least prevent calling a “remote” version of a program if what
you really want is a “local” invocation.

Security features missing in UNIX

ACLs in general (getfacl only gets permissions)
Data labeling, e.g. secret, classified etc.
Mandatory access control, so that individuals are unable to
overrun certain security decisions made by an admin (e.g.
chmod 777 $HOME is always possible)
Capabilities are supported by only a small subset of
UNIX-like operating systems (e.g. Linux with kernel versions
above 2.4.19)
Standardized auditing

Summary

UNIX provides a set of flexible security mechanisms;
however, their efficacy relies on careful and knowledgable
administration.
UNIX does not provide several key features suggested by
security models, e.g. no ACLs or security levels.
The main security strength lies in its open source
implementation; hence, security flaws are discovered and
fixed early.

